
ICT365

Software Development Frameworks

Dr Afaq Shah

Design Principles

In this Topic

SOLID Design Principles

S Single Responsibility Principle

O Open Closed Principle

L Liskovs Substitution Principle

I Interface Segregation Principle

D Dependency Inversion principle

3

Bad designs and poor code is not
good because it is hard to change.

Bad designs are:

- Rigid (change affects too many parts of the
system)

- Fragile (every change breaks something
unexpected)

- Immobile (impossible to reuse)

4

Single Responsibility Principle

“A class should have one reason to change”

Meaning

There can be only one requirement that when changed, will
cause a class to change.

How to do this ?

breaking your story/requirement/code to smaller chunks/class in
such a way that all common behavior is grouped together
under one component.

Single Responsibility means your class has to be very focused

Outcome

You will end up having multiple classes, each related to one
specific behavior. Each of these classes can now be used as a
component.

5

Single Responsibility Principle

The Single Principle states that

Every object should have a single responsibility and that
responsibility should be entirely encapsulated by the
class. - Wikipedia

There should never be more than one reason for a class
to change. – Robert Martin

6

Cohesion and Coupling

Cohesion

How closely related methods and class level variables are in a
class.

Or, How strongly related or focused are various responsibilities
of a module

Coupling

The notion of coupling attempts to capture this concept of
“how strongly” different modules are interconnected

Or, the degree to which each program module relies on each
one of the other module

Strive for low Coupling and High Cohesion!

7

Responsibilities are Axes of
Change

• Requirements changes typically map to
responsibilities

• More responsibilities == More likelihood of
change

• Having multiple responsibilities within a class
couples together these responsibilities

• The more classes a change affects, the more
likely the change will introduce errors.

8

9

Solutions which will not
Violate SRP

• Now it’s up to us how we achieve this.

• One thing we can do is create three
different classes

Employee – Contains Properties (Data)

EmployeeDB – Does database operations

EmployeeReport – Does report related tasks

10

public class Employee

{

public string EmployeeName { get; set; }

public int EmployeeNo { get; set; }

}

public class EmployeeDB

{

public void Insert(Employee e)

{

//Database Logic written here

}

public Employee Select()

{

return new Employee();

//Database Logic written here

}

}

public class EmployeeReport

{

public void GenerateReport(Employee e)

{

//Set report formatting

}

}
11

Can a single class have
multiple methods?

Yes,

A class may have more than one method.

A method will have single responsibility.

12

Summary

• “a reason to change”

• Multiple small interfaces (follow ISP) can
help to achieve SRP

• Following SRP leads to lower coupling and
higher cohesion

• Many small classes with distinct
responsibilities result in a more flexible
design

13

Open Closed Principle

First introduced by Betrand Meyer in 1988

“Your class/module/contracts should be open for
extension and closed for modification”

Meaning

You should be able to extend the behavior of a class
without changing it.

Once a class is done, it should not be modified.

How to do this ?

Creating new class by using inheritance

or

abstraction
14

Example

Power socket/adapter can be
modified but easily extended

using an extension

What is OCP?

• Open for extension

Its behavior can be extended to accommodate new demand.

• Close for modification

The existing source code of the module is not changed or
minimum change when making enhancement

16

Open Closed Principle

To implement OCP, we should be SRP

Output

Lots of components(class) for same behavior but
different implementation

17

The Problem

• Adding new rules require changes to classes every
time

• Each change can introduce bugs and requires re-
testing, etc.

• We want to avoid introducing changes that
cascade through many modules in our application

• Writing new classes is less likely to introduce
problems

Nothing depends on new classes (yet)

New classes have no legacy coupling to make them hard to
design or test

18

19

public abstract class Shape

{

public abstract double CalculateArea();

}

public class Rectangle : Shape

{

public double Height { get; set; }

public double Width { get; set; }

public Rectangle(double height, double width)

{

this.Height = height;

this.Width = width;

}

public override double CalculateArea()

{

return Height * Width;

}

} 20

public class Triangle : Shape

{

public double Base { get; set; }

public double Height { get; set; }

public Triangle(double vbase, double
vheight)

{

this.Base = vbase;

this.Height = vheight;

}

public override double CalculateArea()

{

return 1 / 2.0 * Base * Height;

}

}

public class Circle : Shape

{

public double Radius { get; set; }

public Circle(double radius)

{

this.Radius = radius;

}

public override double CalculateArea()

{

return Math.PI * Radius * Radius;

}

}

21

When do you apply OCP?

• Experience Tells You

• Don’t apply OCP at first

• If the module changes once, accept it.

• If it changes a second time, refactor to achieve
OCP

22

Summary

• OCP yields flexibility, reusability, and
maintainability

• Know which changes to guard against, and resist
premature abstraction

23

Liskov Substitution Principle

Subtypes must be substitutable for their base types.

Barbara Liskov first described the principle in 1988

“If for each object o1 of type S there is an object o2 of
type T such that for all programs P defined in terms
of T, the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.”

Meaning

We should be able to substitute every derived class for
their parent class. A subclass (outcome of OCP)
should behave in such a way that it will not cause
problem when used instead of its super class
(outcome of SRP)

24

LSP

Substitution

Violation

Substitutability

• Child classes must not:

Remove base class behavior

Violate base class invariants

• In general must not require calling code to know
they are different from their base type

26

Summary

• Extension of open close principle

• LSP allows for proper use of polymorphism

• Produces more maintainable code

• Remember IS-SUBSTITUTABLE-FOR instead of IS-A

27

Interface Segregation Principle

Clients should not be forced to depend on the
methods they do not use.

How to do this?

Prefer small, cohesive interface to fat interfaces

Output

Smaller Interfaces with specific responsibility.

28

Real life ISP

• Many client specific interfaces are better
than one general purpose interface

• The dependency of one class to another one
should depend on the smallest possible
interface

• In simple words, if your interface is fat,
break it into multiple interfaces.

ISP..

30

ISP Violation
public interface IReportBAL

{

void GeneratePFReport();

void GenerateESICReport();

void GenerateResourcePerformanceReport();

void GenerateProjectSchedule();

void GenerateProfitReport();

}

public class ReportBAL : IReportBAL

{

public void GeneratePFReport()

{/*...............*/}

public void GenerateESICReport()

{/*...............*/}

public void GenerateResourcePerformanceReport()

{/*...............*/}

public void GenerateProjectSchedule()

{/*...............*/}

public void GenerateProfitReport()

{/*...............*/}

} 31

public class EmployeeUI

{

public void DisplayUI()

{

IReportBAL objBal = new ReportBAL();

objBal.GenerateESICReport();

objBal.GeneratePFReport();

}

}

public class ManagerUI

{

public void DisplayUI()

{

IReportBAL objBal = new ReportBAL();

objBal.GenerateESICReport();

objBal.GeneratePFReport();

objBal.GenerateResourcePerformanceReport();

objBal.GenerateProjectSchedule ();

}

} 32

public class AdminUI

{

public void DisplayUI()

{

IReportBAL objBal = new ReportBAL();

objBal.GenerateESICReport();

objBal.GeneratePFReport();

objBal.GenerateResourcePerformanceReport();

objBal.GenerateProjectSchedule();

objBal.GenerateProfitReport();

}

}

33

Refactoring code following ISP

public interface IEmployeeReportBAL

{

void GeneratePFReport();

void GenerateESICReport();

}

public interface IManagerReportBAL : IEmployeeReportBAL

{

void GenerateResourcePerformanceReport();

void GenerateProjectSchedule();

}

public interface IAdminReportBAL : IManagerReportBAL

{

void GenerateProfitReport();

}

34

public class ReportBAL : IAdminReportBAL

{

public void GeneratePFReport()

{/*...............*/}

public void GenerateESICReport()

{/*...............*/}

public void GenerateResourcePerformanceReport()

{/*...............*/}

public void GenerateProjectSchedule()

{/*...............*/}

public void GenerateProfitReport()

{/*...............*/}

}

35

public class EmployeeUI

{

public void DisplayUI()

{

IEmployeeReportBAL objBal = new ReportBAL();

objBal.GenerateESICReport();

objBal.GeneratePFReport();

}

}

36

public class ManagerUI

{

public void DisplayUI()

{

IManagerReportBAL objBal = new ReportBAL();

objBal.GenerateESICReport();

objBal.GeneratePFReport();

objBal.GenerateResourcePerformanceReport ();

objBal.GenerateProjectSchedule ();

}

}

37

public class AdminUI

{

public void DisplayUI()

{

IAdminReportBAL objBal = new ReportBAL();

objBal.GenerateESICReport();

objBal.GeneratePFReport();

objBal.GenerateResourcePerformanceReport();

objBal.GenerateProjectSchedule();

objBal.GenerateProfitReport();

}

}

38

Dependency Inversion Principle

This principle is about dependencies among the
components (such as two modules, two classes)
of the software.

“A high level module should not depend on a low
level module. Both should depend on
abstraction.

Abstraction should not depend upon details. Details
should depend upon abstraction.”

Meaning

Your classes should not depend on specific
implementation, avoid instantiation of a class X
inside another Y, as this makes your class Y
directly dependent on X and any change in X
might break Y.

39

DIP

Dependency Inversion Principle

We should not use NEW keyword inside a class as this creates a
dependency.

How to do this?

By using Interfaces or Abstract classes to create generic types.

By not using NEW keyword to instantiate an object and instead inject
the dependencies using constructor

If NEW is not to be used, then who will create required object?

By having a Abstract Factory Method responsible for create of new
object.

UI Layer
Repository

Layer
Business

Logic DB

41

What are dependencies?

• Framework

• Third party libraries

• Database

• File System

• Email

• The new keyword

• System resources (clock) etc.

42

Dependencies Problem

• Tight coupling

• No way to change implementation details

OCP Violation

• Difficult to test

43

Remember..

• Try avoiding over engineering and keep the
solution simple and readable.

• Decide how far you want to go with SOLID, as
splitting requirement to SOLID principles is
debatable.

44

Summary

• SOLID Principles are principles of class design.

• SRP: Single Responsibility Principle

An object should have only a single responsibility & all the responsibility should be
entirely encapsulated by the class.

There should never be more than one reason for a class to change

• OCP: Open/Closed Principle

Software entities should be open for extension, but closed for modification

• LSP: Liskov Substitution Principle

Objects in a program should be replaceable with instances of their subtypes without
altering the correctness of that program

• ISP: Interface Segregation Principle

many client specific interfaces are better than one general purpose interface

once an interface has gotten too 'fat' split it into smaller and more specific interfaces so
that any clients of the interface will only know about the methods that pertain to
them. No client should be forced to depend on methods it does not use

• DIP: Dependency Inversion Principle

Depend upon Abstractions. Do not depend upon concretions.

Dependency Injection (DI) is one method of following this principle. 45

More principles

Program to Interface Not Implementation.

Don't Repeat Yourself.

Encapsulate What Varies.

Depend on Abstractions, Not Concrete classes.

Apply Design Pattern wherever possible.

Strive for Loosely Coupled System.

Keep it Simple and Sweet / Stupid. (KISS)

Least Knowledge Principle.

Hollywood Principle.

46

47

48

49

50

51

52

public abstract class Shape

{

public abstract int Area();

}

public class Square : Shape

{

public int SideLength;

public override int Area()

{

return SideLength * SideLength;

}

}

public class Rectangle : Shape

{

public int Height { get; set; }

public int Width { get; set; }

public override int Area()

{

return Height * Width;

}

}
53

LSP
Example

[TestMethod]

public void SixFor2x3Rectangle()

{

var myRectangle = new Rectangle { Height = 2, Width = 3 };

Assert.AreEqual(6, myRectangle.Area());

}

[TestMethod]

public void NineFor3x3Square()

{

var square = new Square { SideLength = 3 };

Assert.AreEqual(9, sqaure.Area());

}

[[TestMethod]

public void TwentyFor4x5ShapeAnd9For3x3Squre()

{

var shapes = new List<Shape>

{

new Rectangle{Height = 4, Width = 5},

new Square{SideLength = 3}

};

var areas = new List<int>();

#region problem

//So you are following both polymorphism and OCP

#endregion

foreach (Shape shape in shapes)

{

areas.Add(shape.Area());

}

Assert.AreEqual(20, areas[0]);

Assert.AreEqual(9, areas[1]);

}
54

C# Reference

• Design Fundamentals, Chapter 10: Component
Guidelines

• https://msdn.microsoft.com/en-
au/library/ee658121.aspx

• Sample chapter: The Liskov Substitution Principle

• https://blogs.msdn.microsoft.com/microsoft_press/201
4/10/31/sample-chapter-the-liskov-substitution-
principle/

• Adaptive Code via C#: Agile coding with design
patterns and SOLID principles

• https://blogs.msdn.microsoft.com/microsoft_press/201
4/10/22/new-book-adaptive-code-via-c-agile-coding-
with-design-patterns-and-solid-principles/

• https://github.com/garymcleanhall/AdaptiveCode
55

https://msdn.microsoft.com/en-au/library/ee658121.aspx
https://blogs.msdn.microsoft.com/microsoft_press/2014/10/31/sample-chapter-the-liskov-substitution-principle/
https://blogs.msdn.microsoft.com/microsoft_press/2014/10/22/new-book-adaptive-code-via-c-agile-coding-with-design-patterns-and-solid-principles/
https://github.com/garymcleanhall/AdaptiveCode

C# Reference

• OOPS Principles (SOLID Principles)

• https://code.msdn.microsoft.com/windowsapps/OOPS-
Principles-SOLID-7a4e69bf

• The SOLID Principles, Explained with Motivational
Posters

• https://blogs.msdn.microsoft.com/cdndevs/2009/07/15
/the-solid-principles-explained-with-motivational-
posters/

• SOLID architecture principles using simple C#
examples

• http://www.codeproject.com/Articles/703634/SOLID-
architecture-principles-using-simple-Csharp

56

https://code.msdn.microsoft.com/windowsapps/OOPS-Principles-SOLID-7a4e69bf
https://blogs.msdn.microsoft.com/cdndevs/2009/07/15/the-solid-principles-explained-with-motivational-posters/
http://www.codeproject.com/Articles/703634/SOLID-architecture-principles-using-simple-Csharp

Acknowledgements

Sources used in this presentation include:

The SOLID Principles, Explained with Motivational Posters:

https://blogs.msdn.microsoft.com/cdndevs/2009/07/15/the-
solid-principles-explained-with-motivational-posters/

SOLID Software Development by Ken Burkhardt

Object Oriented Design Principles with C# by Md. Mahedee Hasan

Examples from https://www.c-sharpcorner.com

57

https://blogs.msdn.microsoft.com/cdndevs/2009/07/15/the-solid-principles-explained-with-motivational-posters/

